AB Practice Exam: Free Response, Part I. Graphing calculators may be used.

1. Set $f(x)=4 x^{2}-x^{3}$, and let \mathcal{L} be the line $y=18-3 x$, where \mathcal{L} is tangent to the graph of f. Let S be the region bounded by the graph of f, the line \mathcal{L} and the x-axis. The area of S is:

(a) Show that \mathcal{L} is tangent to the graph of f at the point $x=3$.
(b) Find the area of S.
(c) Find the volume of the solid generated when R is revolved about the x-axis.
2. A tank contains 125 gallons of oil at time $t=0$. During the time interval $0 \leq t \leq 12$, oil is pumped into the tank at the rate

$$
H(t)=2+\frac{10}{[1+\ln (t+1)]} \text { gallons per hour. }
$$

During the same time interval, oil is being removed from the tank at the rate

$$
R(t)=12 \sin \left(\frac{t^{2}}{47}\right) \text { gallons per hour. }
$$

(a) How many gallons of oil are being pumped into the tank during the time interval $0 \leq$ $t \leq 12$?
(b) Is the level of oil in the tank rising or falling at time $t=6$ hours. Give a reason for your answer.
(c) How many gallons of oil are in the tank at time $t=12$ hours?
(d) At what time t, for $0 \leq t \leq 12$, is the volume of oil in the tank the least? Justify your conclusion.
3. A particle moves along the x-axis so that its velocity v at time t, for $0 \leq t \leq 5$, is given by

$$
v(t)=\ln \left(t^{2}-3 t+3\right)
$$

The particle is at the point $x=8$ at time $t=0$.
(a) Find the acceleration of the particle at time $t=4$.
(b) Find all the times in the open interval $0<t<5$ at which the particle changes direction. During which time intervals, for $0<t<5$, does the particle travel to the left?
(c) Find the position of the particle at time $t=2$.
(d) Find the average speed of the particle over the interval $0 \leq t \leq 2$.

AB Practice Exam: Free Response, Part II. Calculators may not be used.
4. The graph of the function f consists of three line segments.
(a) Let g be the function defined by $g(x)=\int_{-4}^{x} f(t) d t$. For each of $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$ find the value of state that it does not exist.
(b) For the function g given in part (a), find the x-coordinate of each point of inflection of the graph of g on the open interval $-4<x<3$. Explain your reasoning.
(c) Let h be the function defined by $h(x)=\int_{x}^{3} f(t) d t$. Find all the values of x in the closed interval $-4 \leq x \leq 3$ for which $h(x)=0$.
(d) For the function h given in part (c), find all the intervals on which h is decreasing. Explain your reasoning.

5. Consider the curve given by $y^{2}=2+x y$.
(a) Show that $\frac{d y}{d x}=\frac{y}{2 y-x}$.
(b) Find all the points on the curve where the line tangent to the curve has slope $\frac{1}{2}$.
(c) Show that there are no points (x, y) on the curve where the line tangent to the curve is horizontal.
(d) Let x and y be functions of time t that are related by the equation $y^{2}=2+x y$. At time $t=5$, the value of y is 3 and $d y / d t=6$. Find the value of $d x / d t$ at time $t=5$.
6. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{rr}
\sqrt{x+1}, & 0 \leq x \leq 3 \\
5-x, & 3<x \leq 5
\end{array} .\right.
$$

(a) Is f continuous at $x=3$? Explain why or why not.
(b) Find the average value of f on the closed interval $0 \leq x \leq 5$.
(c) Suppose that g is the function defined by

$$
f(x)=\left\{\begin{array}{rl}
k \sqrt{x+1}, & 0 \leq x \leq 3 \\
m x+2, & 3<x \leq 5
\end{array},\right.
$$

where k and m are constants. If g is differentiable at $x=3$, what are the values of k and m ?

