## Measures of Central Tendency

## Purpose:

Participants will determine the mean, median, and mode of a data set.

## Overview:

In pairs, participants will input data into the lists of their graphing calculator. They will determine the mean, median, and mode of the data and provide possible interpretations for these measures of central tendency.

TExES Mathematics 4-8 Competencies. The beginning teacher:
IV.012.B Applies concepts of center, spread, shape, and skewness to describe a data distribution.
IV.012.D Demonstrates an understanding of measures of central tendency (e.g., mean, median, mode) and dispersion (e.g., range, interquartile range, variance, standard deviation).

TEKS Mathematics Objectives. The student is expected to:
5.13.B Describe characteristics of data presented in tables and graphs including the shape and spread of the data and the middle number.
6.10.B Use median, mode, and range to describe data.
7.12.A Describe a set of data using mean, median, mode, and range.
7.12.B Choose among mean, median, mode, or range to describe a set of data and justify the choice for a particular situation.
8.12.A Select the appropriate measure of central tendency to describe a set of data for a particular purpose.

## Terms.

Data, mean, median, mode

## Materials.

For instructor:

- Transparencies
- Overhead graphing calculator and LCD panel

For each participant:

- Data Sheet
- Activity Sheet
- Graphing calculator


## Transparencies.

- Measures of Central Tendency


## Activity Sheet(s).

- Measures of Central Tendency

| Steps | Questions/Math Notes |
| :---: | :---: |
| 1. Have participants enter the data either by hand or by linking two calculators and sending the lists from the calculator that has the data to the other calculator. <br> Ask participants to work in pairs and to check one another's input of data. <br> Ask participants for observations based on the data. | Let L1 = Region Number, L2 = Total Number of Students Enrolled in that Region during 198788, and L3 $=$ Total Number of Students Enrolled in that Region during 1997-98. <br> Do not enter the $4^{\text {th }}$ column of data. |
| 2. Once the data for L1, L2, and L3 are entered into all calculators, have participants compute the total student enrollment change from 1987-88 to 199798 in L4. <br> Once L4 has been calculated, have participants exchange calculators with their partner and check the L4 column for correctness. If L4 is correct, then most likely all the data is correct. | Calculating the total student enrollment change from 1987-88 to 1997-98 in L4 can be done by placing the cursor on L4 and typing L3 - L2. Then press ENTER. |
| 3. Ask participants to predict the mean of L 2 . <br> Ask participants to predict the mean of L3. | Why is making this prediction difficult? (The data are not organized in ascending or descending order, and the values are spread apart so it is difficult to get a sense of an average.) <br> What could the mean represent in this situation? <br> (The mean could represent the average number of students that would reside in one region if the state's student enrollment was evenly distributed among the regions.) <br> Do you expect the mean of $L 3$ to be larger or smaller than the mean of L2? Why? <br> (We expect the mean of L3 to be larger than the mean of $L 2$ because all numbers in L3 are larger than their corresponding partners in L2.) |
| 4. Ask participants to predict the median of L2. | Why is making this prediction difficult? (The data are not organized in ascending or descending order so it is difficult to get a sense of the middle score.) <br> What could the median represent in this situation? <br> (The median could represent the number of students who are enrolled in the "middle" |


|  | region.) |
| :---: | :---: |
| Ask participants to predict the median of L3. | Do you expect the median of $L 3$ to be larger or smaller than the median of L2? Why? <br> (We expect the median of L 3 to be larger than the median of L 2 because all numbers in L3 are larger than their corresponding partners in L2.) |
| 5. Ask participants to predict the mode of L2. <br> Ask participants to predict the mode of L3. | Is predicting the mode difficult? Why or Why not? <br> (There is no mode for L2; all data entries are unique.) <br> Is predicting the mode difficult? Why or Why not? <br> (There is no mode for L3; all data entries are unique.) |
| 6. Ask participants to calculate the mean of L2 and L3. <br> Notes on how to get the calculator to compute the mean are given below. | How will you calculate the mean of L2? L3? (The mean is the average. The data for L2 must be summed together and that sum divided by 20. The same approach is used for L3.) |
| 7. Ask participants to calculate the median of L2 and L3. <br> Notes on how to get the calculator to compute the median are given below. <br> Ask participants to determine the mode of the L2 and L3. | How will you calculate the median of L2? L3? <br> (The data must be in ascending or descending order, and the middle data entry is the median.) <br> Why is the median so much smaller than the mean of the two data sets? <br> (The median is the middle data point. Since much of the data is less than 200,000 total students, the median is closer to 100,000 . The large values at the end of the data set skew (or stretch) the mean to the right; thus, giving the mean a much larger value than the median.) <br> What is the mode of L2? L3? <br> (Neither L2 or L3 have a mode. Each data value is listed only once.) |
| 8. Ask participants to calculate the $1^{\text {st }}$ and $3^{\text {rd }}$ quartiles of L2 and L3. <br> Notes on how to get the calculator to compute the quartiles are given below. | How will you calculate the $1^{\text {st }}$ quartile of $L 2$ or L3? <br> (Calculate the $25^{\text {th }}$ percentile of the data set. The $25^{\text {th }}$ percentile of the data set would be the mean of the $5^{\text {th }}$ and $6^{\text {th }}$ data entries or the mean of the first half of data values.) <br> How will you calculate the $3^{\text {rd }}$ quartile of $L 2$ or L3? <br> (Calculate the $75^{\text {th }}$ percentile of the data set. |


|  | $\begin{array}{l}\text { The } 75^{\text {th }} \text { percentile of the data set would be the } \\ \text { mean of the } 15^{\text {th }} \text { and } 16^{\text {th }} \text { data entries or the } \\ \text { mean of the second half of data values.) }\end{array}$ |
| :--- | :--- |
| $\begin{array}{ll}\text { What can you tell about the data by looking at } \\ \text { the quartiles of } L 2 \text { and } L 3 ? \\ \text { (From the original data, we can see that every }\end{array}$ |  |
| region grew in size over the ten-year span of |  |
| time. The quartile values lead us to believe, |  |
| however, that the data over time has become |  |
| more dispersed. The Q1s of L2 and L3 are |  |
| approximately 3,000 students apart. The Q3s |  |
| of L2 and L3 are approximately 65,000 |  |
| students apart. This would lead us to believe |  |
| that the larger regions (at the end of the data |  |$\}$| set when it is listed in ascending order) are |
| :--- |
| growing at a faster rate than the smaller |
| regions. |

## Calculator Instructions.

Entering Data in Lists. We begin by entering the data into the calculator. On a $\mathrm{Tl}-83$ calculator, press STAT, 1: Edit, and enter data.
L1 = Texas Education Region Numbers
L2 $=$ Total Students Enrolled in Region 1987-88
L3 $=$ Total Students Enrolled in Region 1997-98
To check L2 and L3, highlight L4 and enter $2^{\text {nd }}$ STAT, L3 - L2, then press enter. Check the data with the numbers listed in the handout.

Transferring Data from One Calculator to Another. Use the TI calculator cable to link two calculators together. For the calculator which contains the data, press $2^{\text {nd }}$ LINK, SEND, 4: List, SELECT, and then highlight L1, L2, and L3.
For the calculator which is going to receive the data, press $2^{\text {nd }}$ LINK, RECEIVE, ENTER. Once the receiving calculator is ready to receive the data, press TRANSMIT on the sending calculator. If errors appear, check the cable for proper connection.

Computing the Mean. To compute the mean of L2, we sum the numbers in $L 2$ and divide the sum by the number of regions (20). To do this, we press $2^{\text {nd }}$ QUIT to get to the home screen. Then we press $2^{\text {nd }}$ LIST, MATH, 5: sum(L2), ENTER. We get the sum (total number of students enrolled in Texas schools during the 1987-88 school year) to be $3,224,916$. To determine the mean, we divide the sum by the number of data items (which in this case is 20). On average, there were 161,245.8 students for each region in 1987-88.

Another way to compute the mean is to press $2^{\text {nd }}$ LIST, MATH, 3: mean(L2), ENTER.
Computing the Median. To compute the median of $L 2$, we need the data in ascending or descending order. In order to preserve L2, we can copy the data set to L5 and then convert it to ascending order. To copy the data of L2 to L5, highlight L5, then press $2^{\text {nd }}, 2$ for L2, now press ENTER. The list for L2 will appear in L5. Copy L3 to L6 using the same procedure. To convert the lists to ascending order, press STAT, 2: SortA(L5), ENTER. (SortA sorts the data into ascending order; SortD sorts the data into descending order.) The middle data point is halfway between the $10^{\text {th }}$ and $11^{\text {th }}$ data values or 104,697 students.

Computing the Mode. There is no mode for L2 or L3.
Computing Quartiles. The $25^{\text {th }}$ percentile of a data set is called the first quartile and the $75^{\text {th }}$ percentile is the third quartile. The first quartile value of L5 is an average of the $5^{\text {th }}$ and $6^{\text {th }}$ data entries when the data are listed in ascending order. Hence, the first quartile value is the mean of 56,229 (Region III) and 77,765 (Region XVI) or 66,997 total students. The third quartile value of L 5 is the average of the $15^{\text {th }}$ and $16^{\text {th }}$ data entries when the data are listed in ascending order. Hence, the third quartile value is the mean of 180,493 (Region XIII) and 222,668 (Region I) or 201,580.5 total students.

The first quartile value of $L 6$ is an average of the $5^{\text {th }}$ and $6^{\text {th }}$ data entries when the data are listed in ascending order. Hence, the first quartile value is the mean of 57,730 (Region III) and 80,711 (Region XVI ) or $69,220.5$ total students. The third quartile value of L6 is an average of the $15^{\text {th }}$ and $16^{\text {th }}$ data entries when the data are listed in ascending order. Hence, the third quartile value is the mean of 247,989 (Region XIII) and 284,614 (Region I) or 266,301.5 total students.

## L2 (1987-1988 data)

L3 (1997-1998 data)
Q1 $=66,997$ students
Q1 = 69,220.5 students
Q3 $=201,580.5$ students
Q3 $=266,301.5$ students
Of course, 0.5 of a student isn't a reasonable answer.
We can also determine the first and third quartile values using the calculator. Press STAT, CALC, 1: 1-Var Stats L3, ENTER. This command provides the mean value, the sum of the $x$ values, the sum of the $x^{2}$ values, the sample standard deviation, the population standard deviation, the value of $n$, minimum value of $x, Q 1$, Median, $Q 3$, and the maximum value of $x$.

## Solutions to Activity Sheet:

1. L 2 (1987-1988 data)
mean of L2 $=161,245.8$ students
median of L2 $=104,697$ students
no mode for L2
L3 $(1997-1998$ data)
mean of L3 $=194,575.65$ students
median of L3 $=120,286$ students
no mode for L3
L3 $(1997-1998$ data)
Q1 $=69,220.5$ students
Q3 $=266,301.5$ students

Q3 $=201,580.5$ students
Q3 $=266,301.5$ students
Of course, 0.5 of a student isn't a reasonable answer.
3. The mean of $\mathrm{L} 3=194,575.65$ students could be interpreted in the following way: If the student population were distributed evenly throughout the state of Texas in 1997-98, then each region in Texas would have had approximately 194, 576 students. The two outliers (Regions IV and X) cause the mean to be enlarged and, hence, not the best representation of the overall data.

Which region most closely represented the state's mean population in 1997-98?
Was your Regional Service Center servicing more or less than the state's average student population in 1997-98? What \% above or below the state average was enrolled in your region?
4. The median of $\mathrm{L} 3=120,286$ students could be interpreted in the following way: The middle enrollment in Texas' 20 regions in 1997-98 was 120,286 students. The median is a more appropriate interpretation of the data than the mean.

Which regions most closely represent the median of the 1997-98 data?

Why is the mean of $L 3$ so much larger than the median?
5. From the original data, we can see that every region grew in size over the ten-year span of time. The quartile values lead us to believe, however, that the data over time has become more dispersed. The Q1s of L2 and L3 are only approximately 3,000 students apart. The Q3s of L2 and L3 are approximately 65,000 students apart. This would lead us to believe that the larger regions (at the end of the data set when it is listed in ascending order) are growing at a faster rate than the smaller regions.

