Number of Divisors

Complete the following steps for each set of numbers.

1. Generate a prime factorization of each number.
2. List all the factors of the number.
3. Determine the number of factors.
4. Look for patterns and find a connection between the prime factored form of the number and its total number of factors.

SET A			
\#	Prime Factored Form	List of All Factors	Number Of Factors
4	2^{2}	1, 2, 4	3
8	2^{3}	1, 2, 4, 8	4
9	3^{2}	1, 3, 9	3
16	2^{4}	1, 2, 4, 8, 16	5
25	5^{2}	1, 5, 25	3
27	3^{3}	1, 3, 9, 27	4
32	2^{5}	1, 2, 4, 8, 16, 32	6
49	$7{ }^{2}$	1, 7, 49	3
64	2^{6}	$\begin{aligned} & 1,2,4,8,16,32, \\ & 64 \end{aligned}$	7
81	3^{4}	1, 3, 9, 27, 81	5
125	5^{3}	1, 5, 25, 125	4
128	2^{7}	$\begin{aligned} & 1,2,4,8,16,32, \\ & 64,128 \end{aligned}$	8

What connection is there between the prime-factored form of a number and its total number of factors?

The total number of factors is always one larger than the exponent when the number is in prime-factored form.

SET B			
\#	Prime Factorization	List of All Factors	Number Of Factors
6	$2^{1} \times 3^{1}$	1, 2, 3, 6	4
15	$3^{1} \times 5^{1}$	1, 3, 5, 15	4
77	$7^{1} \times 11^{1}$	1, 7, 11, 77	4
Sample answers might be:			
10	$2^{1} \times 5^{1}$	1, 2, 5, 10	4
14	$2^{1} \times 7^{1}$	1, 2, 7, 14	4
21	$3^{1} \times 7^{1}$	1, 3, 7, 21	4
35	$5^{1} \times 7^{1}$	1, 5, 7, 35	4

What connection is there between the prime-factored form of one of these numbers and its total \# of factors?
Take each exponent and increase it by one. Find the product of the two numbers ($2 \times 2=4$).
Or...Double the sum of the two exponents.

SET C	Prime Factorization	List of All Factors	Number Of Factors			
$\#$	$2^{2} \times 3^{1}$	$1,2,3,4,6,12$	6			
12	$3^{2} \times 5^{1}$	$1,3,5,9,15,45$	6			
45	$2^{1} \times 5^{2}$	$1,2,5,10,25,50$	6			
50	Sample answers might be: 18 $2^{1} \times 3^{2}$				$1,2,3,6,9,18$	6
20	$2^{2} \times 5^{1}$	$1,2,4,5,10,20$	6			
28	$2^{2} \times 7^{1}$	$1,2,4,7,14,28$	6			

What connection is there between the prime-factored form of one of these numbers and its total \# of factors?
Take each exponent and increase it by one. Find the product of the two numbers ($3 \times 2=6$).
Or...Double the sum of the two exponents.

SET D	Prime	List of All Factors	\# of Factors
F Factorization			

Take each exponent and increase it by one. Find the product of the two numbers $(4 \times 2=8)$. Or...Double the sum of the two exponents.

SET E			
$\#$	Prime Factorization	List of All Factors	\# of Factors
72	$2^{3} \times 3^{2}$	$1,2,3,4,6,8,9$, $12,18,24,36,72$	12
108	$2^{2} \times 3^{3}$	$1,2,3,4,6,9,12$, $18,27,36,54,108$	12
200	$2^{3} \times 5^{2}$	$1,2,4,5,8,10,20,25,40,50$, 100,200	12
Sample answers might be:	$1,2,4,7,8,14,28,49,56,98$, 196,392	12	
392	$2^{3} \times 7^{2}$	$1,2,4,5,10,20,25,50,100$, $125,250,500$	12
500	$2^{2} \times 5^{3}$		

Take each exponent and increase it by one. Find the product of the two numbers (4x $3=12$).

SET F			
\#	Prime Factorization	List of All Factors	\# Of Factors
36	$2^{2} \times 3^{2}$	1, 2, 3, 4, 6, 9, 12, 18, 36	9
100	$2^{2} \times 5^{2}$	$\begin{aligned} & 1,2,4,5,10,20,25,50, \\ & 100 \end{aligned}$	9
225	$3^{2} \times 5^{2}$	$\begin{aligned} & 1,3,5,9,15,25,45,75, \\ & 225 \end{aligned}$	9
Sample answers might be:			
196	$2^{2} \times 7^{\mathbf{2}}$	$\begin{aligned} & 1,2,4,7,14,28,49,98 \\ & 196 \end{aligned}$	9
441	$3^{2} \times 7^{2}$	$\begin{aligned} & 1,3,7,9,21,49,63,147, \\ & 441 \end{aligned}$	9

Take each exponent and increase it by one. Find the product of the two numbers (3x $3=9$).

SET G			
$\#$	Prime Factorization	List of All Factors	$\#$ of Factors
144	$2^{4} \times 3^{2}$	$1,2,3,4,6,8,9,12,16,18,24,36$, $48,72,144$	15
324	$2^{2} \times 3^{4}$	$1,2,3,4,6,9,12,18,27,36,54$, $81,108,162,324$	15
Sample answers might be: 400 $2^{4} \times 5^{2}$ $1,2,4,5,8,10,16,20,25,40,50$, $80,100,200,400$ 15 784 $2^{4} \times 7^{2}$ $1,2,4,7,8,14,16,28,49,56,98$, $112,196,392,784$ 15			

Take each exponent and increase it by one. Find the product of the two numbers (5 x $3=15$).

SET H			
\#	Prime Factorization	List of All Factors	$\begin{gathered} \# \text { of } \\ \text { Factors } \end{gathered}$
30	$2^{1} \times 3^{1} \times 5^{1}$	1, 2, 3, 5, 6, 10, 15, 30	8
120	$2^{3} \times 3^{1} \times 5^{1}$	$\begin{aligned} & 1,2,3,4,5,6,8,10,12,15, \\ & 20,24,30,40,60,120 \end{aligned}$	16
140	$2^{2} \times 5^{1} \times 7^{1}$	$\begin{aligned} & 1,2,4,5,7,10,14,20,28,35 \\ & 70,140 \end{aligned}$	12
162	$2^{1} \times 3^{4}$	1, 2, 3, 6, 9, 18, 27, 54, 81, 162	10
396	$2^{2} \times 3^{2} \times 11^{1}$	$\begin{aligned} & 1,2,3,4,6,9,11,12,18,22, \\ & 33,36,44,66,99,132,198, \\ & 396 \end{aligned}$	18

Take each exponent and increase it by one. Find the product of the two numbers.
The number of factors of 30 is equal to $2 \times 2 \times 2$ or 8 .
The number of factors of 120 is equal to $4 \times 2 \times 2$ or 16 .
The number of factors of 140 is equal to $3 \times 2 \times 2$ or 12 .
The number of factors of 162 is equal to 2×5 or 10 .
The number of factors of 396 is equal to $3 \times 3 \times 2$ or 18 .

