Number of Divisors

Complete the following steps for each set of numbers.

- 1. Generate a prime factorization of each number.
- 2. List all the factors of the number.
- 3. Determine the number of factors.
- 4. Look for patterns and find a connection between the prime factored form of the number and its total number of factors.

SET A			
#	Prime	List of	Number
	Factored Form	All Factors	Of Factors
4	2 ²	1, 2, 4	3
8	2 ³	1, 2, 4, 8	4
9	3 ²	1, 3, 9	3
16	2 ⁴	1, 2, 4, 8, 16	5
25	5 ²	1, 5, 25	3
27	3 ³	1, 3, 9, 27	4
32	2 ⁵	1, 2, 4, 8, 16, 32	6
49	7 ²	1, 7, 49	3
64	2 ⁶	1, 2, 4, 8, 16, 32,	7
		64	
81	3 ⁴	1, 3, 9, 27, 81	5
125	5 ³	1, 5, 25, 125	4
128	2 ⁷	1, 2, 4, 8, 16, 32,	8
		64, 128	

What connection is there between the prime-factored form of a number and its total number of factors?

The total number of factors is always one larger than the exponent when the number is in prime-factored form.

SET B			
#	Prime	List of	Number
	Factorization	All Factors	Of Factors
6	2 ¹ x 3 ¹	1, 2, 3, 6	4
15	3 ¹ x 5 ¹	1, 3, 5, 15	4
77	7 ¹ x 11 ¹	1, 7, 11, 77	4
Sample	answers might	be:	
10	2 ¹ x 5 ¹	1, 2, 5, 10	4
14	2 ¹ x 7 ¹	1, 2, 7, 14	4
21	3 ¹ x 7 ¹	1, 3, 7, 21	4
35	5 ¹ x 7 ¹	1, 5, 7, 35	4

What connection is there between the prime-factored form of one of these numbers and its total # of factors? <u>Take each exponent and increase it by one.</u> Find the product of the two numbers $(2 \times 2 = 4)$. Or...Double the sum of the two exponents.

SET C			
#	Prime	List of	Number
	Factorization	All Factors	Of Factors
12	$2^2 \times 3^1$	1, 2, 3, 4, 6, 12	6
45	3 ² x 5 ¹	1, 3, 5, 9, 15, 45	6
50	2 ¹ x 5 ²	1, 2, 5, 10, 25, 50	6
Sample	answers might	be:	
18	$2^1 \times 3^2$	1, 2, 3, 6, 9, 18	6
20	2 ² x 5 ¹	1, 2, 4, 5, 10, 20	6
28	$2^2 \times 7^1$	1, 2, 4, 7, 14, 28	6

What connection is there between the prime-factored form of one of these numbers and its total # of factors? <u>Take each exponent and increase it by one.</u> Find the product of the two numbers $(3 \times 2 = 6)$. Or...Double the sum of the two exponents.

SET D			
#	Prime	List of	# of
	Factorization	All Factors	Factors
24	$2^3 \times 3^1$	1, 2, 3, 4, 6, 8, 12, 24	8
40	2 ³ x 5 ¹	1, 2, 4, 5, 8, 10, 20, 40	8
54	$2^{1} \times 3^{3}$	1, 2, 3, 6, 9, 18, 27, 54	8
Sample	answers might	t be:	
56	$2^3 \times 7^1$	1, 2, 4, 7, 8, 14, 28, 56	8
88	2 ³ x 11 ¹	1, 2, 4, 8, 11, 22, 44, 88	8
135	$3^3 \times 5^1$	1, 3, 5, 9, 15, 27, 45, 135	8

Take each exponent and increase it by one. Find theproduct of the two numbers $(4 \times 2 = 8)$.Or...Double the sum of the two exponents.

SET E			
#	Prime	List of	# of
	Factorization	All Factors	Factors
72	$2^3 \times 3^2$	1, 2, 3, 4, 6, 8, 9,	12
		12, 18, 24, 36, 72	
108	$2^2 \times 3^3$	1, 2, 3, 4, 6, 9, 12,	12
		18, 27, 36, 54, 108	
200	2 ³ x 5 ²	1, 2, 4, 5, 8, 10, 20, 25, 40, 50,	12
		100, 200	
Sample	e answers migh	t be:	
392	$2^3 \times 7^2$	1, 2, 4, 7, 8, 14, 28, 49, 56, 98,	12
		196, 392	
500	$2^2 \times 5^3$	1, 2, 4, 5, 10, 20, 25, 50, 100,	12
		125, 250, 500	

<u>Take each exponent and increase it by one.</u> Find the product of the two numbers $(4 \times 3 = 12)$.

SET F			
#	Prime	List of	# Of
	Factorization	All Factors	Factors
36	$2^2 \times 3^2$	1, 2, 3, 4, 6, 9, 12, 18, 36	9
100	$2^2 \times 5^2$	1, 2, 4, 5, 10, 20, 25, 50, 100	9
225	3 ² x 5 ²	1, 3, 5, 9, 15, 25, 45, 75, 225	9
Sample	answers might	be:	
196	$2^2 \times 7^2$	1, 2, 4, 7, 14, 28, 49, 98, 196	9
441	$3^2 \times 7^2$	1, 3, 7, 9, 21, 49, 63, 147, 441	9

Take each exponent and increase it by one. Find the product of the two numbers $(3 \times 3 = 9)$.

SET G			
#	Prime	List of	# of
	Factorization	All Factors	Factors
144	$2^4 \times 3^2$	1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144	15
324	2 ² x 3 ⁴	1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 324	15
Sample	answers might be):	
400	2 ⁴ x 5 ²	1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400	15
784	2 ⁴ x 7 ²	1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, 784	15

Take each exponent and increase it by one. Find the product of the two numbers (5 \times 3 = 15).

SET H			
#	Prime	List of	# of
	Factorization	All Factors	Factors
30	2 ¹ x 3 ¹ x 5 ¹	1, 2, 3, 5, 6, 10, 15, 30	8
120	2 ³ x 3 ¹ x 5 ¹	1, 2, 3, 4, 5, 6, 8, 10, 12, 15,	16
		20, 24, 30, 40, 60, 120	
140	2 ² x 5 ¹ x 7 ¹	1, 2, 4, 5, 7, 10, 14, 20, 28, 35,	12
		70, 140	
162	2 ¹ x 3 ⁴	1, 2, 3, 6, 9, 18, 27, 54, 81, 162	10
396	2 ² x 3 ² x 11 ¹	1, 2, 3, 4, 6, 9, 11, 12, 18, 22,	18
		33, 36, 44, 66, 99, 132, 198,	
		396	

Take each exponent and increase it by one. Find the product of the two numbers.

The number of factors of 30 is equal to $2 \times 2 \times 2$ or 8. The number of factors of 120 is equal to $4 \times 2 \times 2$ or 16. The number of factors of 140 is equal to $3 \times 2 \times 2$ or 12. The number of factors of 162 is equal to 2×5 or 10. The number of factors of 396 is equal to $3 \times 3 \times 2$ or 18.