Number of Divisors

Complete the following steps for each set of numbers.

1. Generate a prime factorization of each number.
2. List all the factors of the number.
3. Determine the number of factors.
4. Look for patterns and find a connection between the prime factored form of the number and its total number of factors.

SET A			
Number	Prime Factored Form	List of All Factors	Number Of Factors
4			
8			
9			
16			
25			
27			
32			
49			
64			
81			
125			
128			

What connection is there between the prime-factored form of one of these numbers and its total \# of factors?

SET B				
$\#$	Prime Factored Form	List of All Factors	Number Of Factors	
6				
15				
77				
List 1 more number that has this same \# of factors.				

SET C				
$\#$	Prime Factored Form	List of All Factors	Number Of Factors	
12				
45				
50				
List 1 more number that has this same \# of factors.				

SET D				
$\#$	Prime Factored Form	List of All Factors	Number Of Factors	
24				
40				
54				
List 1 more number that has this same \# of factors.				

What connection is there between the prime-factored form of one of these numbers and its total \# of factors?

SET E				
$\#$	Prime Factored Form	List of All Factors	Number Of Factors	
72				
108				
200				
List 1 more number that has this same \# of factors.				

SET F				
$\#$	Prime Factored Form	List of All Factors	Number Of Factors	
36				
100				
225				
List 1 more numbers that has this same \# of factors.				

SET G				
$\#$	Prime Factored Form	List of All Factors	Number Of Factors	
144				
324				
List 1 more number that has this same \# of factors.				

What connection is there between the prime-factored form of one of these numbers and its total \# of factors?

SET H			
$\#$	Prime Factored Form	List of All Factors	Number Of Factors
30			
120			
140			
162			
396			

What connection is there between the prime-factored form of one of these numbers and its total \# of factors? State one rule that will work for all Sets A-H.
\qquad
\qquad
\qquad
\qquad

