Math 1314
The Chain Rule
In this lesson, you will learn the last of the basic rules for finding derivatives, the chain rules.

Example 1: Decompose $h(x)=\left(4 x^{3}+2 x-1\right)^{5}$ into functions $f(x)$ and $g(x)$ such that $h(x)=(f \circ g)(x)$.

Rule 9: The Chain Rule

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example 2: Find the derivative if $f(x)=\left(2 x^{4}+7\right)^{5}$.

Example 3: Find the derivative if $f(x)=\sqrt{5 x^{2}+1}$.

Example 4: Find the derivative if $f(x)=\frac{-9}{\left(3 x^{2}-4\right)^{5}}$.

We can also apply the chain rule in problems involving the exponential function and the logarithmic function.

Rule 10: The Chain Rule (Exponential Function)

$$
\frac{d}{d x}\left[e^{f(x)}\right]=e^{f(x)} \cdot f^{\prime}(x)
$$

Example 5: Find the derivative: $f(x)=5 e^{2 x}$.

Rule 11: The Chain Rule (Logarithmic Function)

Rule 10: $\frac{d}{d x}[\ln |f(x)|]=\frac{f^{\prime}(x)}{f(x)}$, provided $f(x)>0$

Example 6: Find the derivative: $f(x)=\ln \left(4 x^{2}+1\right)$.

Sometimes it is helpful to use the properties of logarithms to simplify a problem before we find the derivative:

Example 7: Find the derivative: $f(x)=\ln \left(3 x^{2}\right)$

Example 8: Find the derivative: $f(x)=\ln \left[\left(2 x^{2}+1\right)^{4}\left(5 x^{2}-1\right)^{3}\right]$

We can also use the chain rules together with either the product rule or the quotient rule.
Example 9: Find the derivative: $f(x)=x^{3} e^{2 x}$

Example 10: Find the derivative: $f(x)=x^{5} \ln \left(x^{2}-7\right)$

Example 11: Find the derivative of $f(x)=x^{2}\left(3 x^{2}-5\right)^{3}$.

From this lesson, you should be able to
Apply the chain rules to appropriate problems to find derivatives Use the chain rule, together with other rules, to find derivatives
Use \log properties to simplify \log problems before finding derivatives

