Partial Derivatives

When we are asked to find the derivative of a function of a single variable, $f(x)$, we know exactly what to do. However, when we have a function of two variables, there is some ambiguity. We can find the slope of the tangent line at a point P from an infinite number of directions. We will only consider two directions, either parallel to the x axis or parallel to the y axis. When we do this, we fix one of the variables. Then we can find the derivative with respect to the other variable.

So, if we fix y, we can find the derivative of the function with respect to the variable x. And if we fix x, we can find the derivative of the function with respect to the variable y.

These derivatives are called partial derivatives.

First Order Partial Derivatives

We will use two different notations:

Example 1: Find the first order partial derivatives of the function $f(x, y)=x^{2}-4 x y^{2}+3 y^{2}$.

Example 2: Find the first order partial derivatives of the function $f(x, y)=\frac{2 x y}{x^{2}+3 y^{2}}$.

Example 3: Find the first order partial derivatives of the function $f(x, y)=\left(x^{2}+x y-5 y^{2}\right)^{3}$.

Example 4: Find the first order partial derivatives of the function $f(x, y)=e^{x^{2}+2 y^{2}}$.

Example 5: Find the first order partial derivatives of the function $f(x, y)=\ln \left(5 x^{2}+2 y^{2}\right)$

Second Order Partial Derivatives

Sometimes we will need to find the second order partial derivatives. To find a second order partial derivative, you will take respective partial derivatives of the first order partial derivative. There are a total of 4 second order partial derivatives.

There are two notations, but we will only use one of them.

Example 6: Find the second order partial derivatives of the function $f(x, y)=5 x^{2} y^{2}-2 x^{2}+15 y$.

Example 7: Find the second order partial derivatives of the function $f(x, y)=4 x^{2}+2 x^{3} y^{3}-x y+3 y^{3}$.

We can also evaluate a partial derivative at a given point.
Example 8: Evaluate the first order partial derivative of $f(x, y)=2 x y^{3}+e^{x y}$ at the point $(1,2)$.

From this section, you should be able to
Find first order partial derivatives
Find second order partial derivatives
Evaluate partial derivatives at a given point

