Math 1314
Functions of Several Variables
So far, we have looked at functions of a single variable. In this section, we will consider functions of more than one variable. You are already familiar with some examples of these.

$$
\begin{aligned}
& P(x, y)=2 x+2 y \\
& A(P, i, t)=P(1+i)^{t}
\end{aligned}
$$

These formulas are functions of several variables. We have just never called them that before. We will, for the most part, limit our discussion to functions of two variables.

## Functions of Two Variables

Definition: A real valued function of two variables, $f$, consists of a set $A$ of ordered pairs of real numbers $(x, y)$ called the domain of the function, and a rule that associates with each ordered pair in the domain of $f$ one and only one real number, denoted by $z=f(x, y)$.

You will need to learn several skills using functions of several variables:

1. Evaluating a function of several variables at a given point.

Example 1: Suppose $f(x, y)=5 x^{2} y+2 x y-6$. Compute
$f(0,0), f(-2,1)$ and $f(-2,-3)$.

Example 2: The volume of a cylindrical tank with radius $r$ and height $h$ is given by the formula $V=f(r, h)=\pi r^{2} h$. Find the volume of a tank with radius 8 feet and height 14 feet.
2. Find the domain of a function of several variables. We'll have several kinds of situations that are similar to finding domain of functions of a single variable. Problems arise when we have rational functions, functions involving radicals and logarithmic functions.

Example 3: Find the domain of the function $f(x, y)=5 x^{2}-2 y^{2}$.

Example 4: Find the domain of the function $f(x, y)=\frac{6 x}{3 x-4 y}$.

Example 5: Find the domain of the function $f(x, y)=\sqrt{25-x^{2}-y^{2}}$.

Example 6: Find the domain of the function $f(x, y)=\ln (5 x+y)$.

Graphing functions in space is quite difficult. You will not need to do this. Here are a couple of examples of graphs of functions of two variables.


Hopefully, you'll recognize how difficult it would be to graph these manually. We usually graph functions of two variables using a computer.
3. You will need to be able to graph level curves of a function of two variables.

Sometimes, we need to get a snapshot of what is happening to a function. To do this, we choose a value, $c$, for z , and graph the function $f(x, y)=c$. This gives us a function in $x$ and $y$ only, and we are able to graph this in the coordinate plane. This is called a trace of the graph of $f$ in the plane where $z=c$. If we then project this onto the $x y$ plane, we have a level curve.

Suppose we consider this function of two variables:


The traces are horizontal "slices" at various heights. We'll graph the outlines of these in the $x y$ place.

You can draw the level curves for some simple functions.
Example 7: Sketch the level curves for the function $f(x, y)=x^{2}+y^{2}$ where $c=1,4,9$, 16 and 25.

Example 8: Sketch the level curves for the function $f(x, y)=-x^{2}+y$, where $c=-2,-1,0$, 1 , and 2.

From this section, you should be able to
Evaluate a function of several variables
Find the domain of a function of several variables
Sketch level curves, given a function of several variables and value(s) for $c$.

