One-Sided Limits and Continuity

One-Sided Limits

Sometimes we are only interested in the behavior of a function when we look from one side and not from the other.

Example 1: Consider the function $f(x)=\frac{|x|}{x}$. Find $\lim _{x \rightarrow 0} f(x)$.

Now suppose we are only interested in looking at the values of x that are bigger than 0 . In this case, we are looking at a one-sided limit.

We write $\lim _{x \rightarrow 0^{+}} f(x)$. This is called a right-hand limit, because we are looking at values on the right side of the target number.

In this case,

If we are interested in looking only at the values of x that are smaller than 0 , then we would be finding the left-hand limit. The values of x that are smaller than 0 are to the left of 0 on the number line, hence the name. We write $\lim _{x \rightarrow 0^{-}} f(x)$.

In this case,
Our definition of a limit from the last lesson is consistent with this information. We say that $\lim _{x \rightarrow a} f(x)=L$, if and only if the function approaches the same value, L, from both the left side and the right side of the target number. This idea is formalized in this theorem:

Theorem: Let f be a function that is defined for all values of x close to the target number a, except perhaps at a itself. Then $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L$.

Example 2: Consider this graph:

Find $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1} f(x)$, if it exists.

We can also find one-sided limits from piecewise defined functions.
Example 3: Suppose $f(x)=\left\{\begin{array}{ll}x+4, & x>2 \\ x^{2}-1, & x \leq 2\end{array}\right.$. Find $\lim _{x \rightarrow 2^{-}} f(x), \lim _{x \rightarrow 2^{+}} f(x)$ and $\lim _{x \rightarrow 2} f(x)$ (if it exists).

Example 4: Suppose $f(x)=\left\{\begin{array}{lc}x^{2}+3, & x<-1 \\ x^{3}+5, & x \geq-1\end{array}\right.$.
Find $\lim _{x \rightarrow-1^{-}} f(x), \lim _{x \rightarrow-1^{+}} f(x)$ and $\lim _{x \rightarrow-1} f(x)$ (if it exists).

Continuity

A function is continuous on an interval if it has no gaps, holes, breaks or jumps. If you can trace the graph of a function over a given interval without ever lifting your pencil, then the function is continuous over that interval.

We will be interested in finding where a function is continuous and where it is discontinuous. We'll look at continuity over the entire domain of the function, over a given interval and at a specific point.

Continuity at a Point:

A function f is said to be continuous at the point $x=a$ if the following three conditions are met:

1. $f(a)$ is defined
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

Example 7: Determine if $f(x)=\left\{\begin{array}{ll}5 x-1, & x \geq 1 \\ x^{2}+3, & x<1\end{array}\right.$ is continuous at $x=1$.

If a function is not continuous at a point, then we say it is discontinuous at that point.

Continuity over an Interval

A function is continuous over the interval $[a, b]$ if it is continuous at every point in the interval.

We find points of discontinuity by examining the function that we are given.
Example 8: Find any points of discontinuity. State why the function is discontinuous.

Examples

Once we know where a function is discontinuous, we know it is continuous everywhere else.

Example 11: State where f is continuous using interval notation:

Example 12: State where f is continuous using interval notation:

Example 13: State where f is continuous using interval notation: $f(x)=\frac{3 x-7}{x^{2}-25}$.

Sometimes we consider continuity over the entire domain of the function. For many functions, this is the entire set of real numbers. A function is continuous on its domain if there are no points of discontinuity in the domain of the function.

Example 14: State where $f(x)=5 x^{4}+6 x^{2}-3 x+1$ is continuous.

From this lesson you should be able to
Say what we mean by a one-sided limits
Find a one-sided limit from the graph of a function
Find a one-sided limit from a piecewise-defined function
Find a one-sided limit from a function
Determine if a function is continuous at a point
Find points of discontinuity over an interval or over the domain of the function given either a graph of the function or the function itself
State intervals where a function is continuous given either a graph of the function or the function itself

