Math 1314
Area and the Definite Integral
We are now ready to tackle the second basic question of calculus - the area question.
We can easily compute the area under the graph of a function so long as the shape of the region conforms to something for which we have a formula for geometry.

Example 1: Suppose $f(x)=5$. Find the area under the graph of $f(x)$ from $x=0$ to $x=4$.

Approximating Area Under a Curve

Now suppose the area under the curve is not something whose area can be easily computed. We'll need to develop a method for finding such an area.

Example 2:

Example 3:

Example 4:

What you should see is that as the number of rectangles increases, the area we compute in this method becomes more accurate.

The Area Under the Graph of a Function:

Let f be a nonnegative continuous function on $[a, b]$. Then the area of the region under the graph of f is given by

$$
A=\lim _{x \rightarrow \infty}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right] \Delta x
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are arbitrary points in the interval $[a, b]$ of equal width $\Delta x=\frac{b-a}{n}$.

The sums of areas of rectangles are called Riemann sums and are named after a German mathematician.

Example 5: Use left endpoints and 4 subdivisions of the interval to approximate the area under $f(x)=3 x^{2}+2$ on the interval $[0,2]$.

Example 6: Use right endpoints and 4 subdivisions of the interval to approximate the area under $f(x)=3 x^{2}+2$ on the interval $[0,2]$.

Example 7: Use midpoints and 4 subdivisions of the interval to approximate the area under $f(x)=3 x^{2}+2$ on the interval $[0,2]$.

The Definite Integral

Let f be defined on $[a, b]$. If $\lim _{x \rightarrow \infty}\left(\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right] \Delta x\right)$ exists for all choices of representative points in the n subintervals of $[a, b]$ of equal width $\Delta x=\frac{b-a}{n}$, then this limit is called the definite integral of f from a to b. The definite integral is noted by $\int_{a}^{b} f(x) d x=\lim _{x \rightarrow \infty}\left|\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right] \Delta x\right|$. The number a is called the lower limit of integration and the number b is called the upper limit of integration.

A function is said to be integrable on $[a, b]$ if it is continuous on the interval $[a, b]$.

The definite integral of a nonnegative function:

The definite integral of a general function:

From this section, you should be able to
Explain the procedure used to approximate area under a curve
Use Riemann sums to approximate the area under a curve using right endpoints, left endpoints or midpoints
Explain what we mean by definite integral of a non-negative function or a general function.

